

西华大学实验报告 (理工类)

开课学院及实验室:建筑与土木工程学院 力学实验中心 实验时间: 年 月 日

学 生 姓 名	学号	成绩	
学生所在学院		年级/专业/班	
课程名称	材料力学实验	课程代码	190699049
实验项目名称	拉伸与压缩实验	项目代码	41309001
指导教师		项目学分	0.075

拉伸实验

一、实验目的:

二、实验设备、仪器及材料:

三、实验数据:

1.低碳钢(Q235)

	实		验	前			实	验	后
	直径	d ₀ (mn	n)	截面	标 距	直径	d _u (mm)	缩颈处	标 距
	截面	截面	截面	面积	L_0			截面面积	Lu
	I	П	ш	S ₀ (mm ²)	(mm)	(缩 	育颈处)	$S_{u}(mm^{2})$	(mm)
1						1			
2						2			
平均						平均			

下屈服强度
$$R_{eL} = \frac{F_{eL}}{S_o} =$$
 ______ = _____ MPa

抗拉强度
$$R_m = \frac{F_m}{S_o} =$$
 ______ MPa

2.铸铁

直 径 d ₀ (mm)			截面面积	最大载荷	抗拉强度	
	截 面 I	截 面 II	截 面 III	S_0 (mm ²)	F_m (N)	R_m (MPa)
1						$R = \frac{F_m}{F_m} =$
2						$R_m = \frac{T_m}{S_0} =$
平均						=

3.拉伸图: (F-1 图)

a.低碳钢(Q235):

b.铸铁:

压缩实验

一、实验目的:

二、实验设备、仪器及材料:

三、实验数据:

1.低碳钢(Q235):

压缩前试件直径 d₀(mm)		截面面积 S_0 (mm 2)	下压缩 屈服载荷 F _{eLc} (N)	下压缩 屈服强度 R _{eLc (} MPa)
1				$R = \frac{F_{eLc}}{}$
2				$R_{eLc} = \frac{r_{eLc}}{S_0} =$
平均				=

2.铸铁:

工熔带沿州古尔		截面面积 S_0	最大载荷	抗压强度
	压缩前试件直径 d₀(mm)		$F_{\it mc}$	R_{mc}
u ₀ ((N)	(MPa)
1				$R_{mc} = \frac{F_{mc}}{F_{mc}} =$
2				S_0
平均				=

3.压缩图: (F-AL 图)

a.低碳钢(Q235):

b.铸铁:

四、分析、讨论:

- 1.说明拉伸实验中低碳钢与铸铁的断口特征。
- 2.比较低碳钢与铸铁在拉伸时的力学性能;比较低碳钢与铸铁在压缩时的力学性能。
- 3.铸铁试样压缩时,为什么沿与轴线成 45° 左右的斜截面破坏。